
ICT159 Lecture Notes Topic 7 – Page 1

Topic 7 – File I/O
INTRODUCTION
The Problem
 Virtually every program that we've written and looked at

this semester has worked roughly the same way:

 Data is read in from keyboard.
 The program does something with the data.
 The results are displayed.

 This approach allows us to usefully solve many problems

but it has one big limitation.
 Each time the program runs it “starts from scratch” and

has no record of what happened when it ran before.

 For many simple problems this is not an issue.
 But often it is – particularly when there is a lot of data that

needs to be processed.

ICT159 Lecture Notes Topic 7 – Page 2

 Consider a program that manages the ordering of stock for
a large department store.

 If the program has no record of what happened the last time
it was run then it will be virtually useless.

 For example, every time the program is run someone
will need to input into it all the details concerning the
stock in the store.

 This might include information about each item, current

stock available, price information and where the item can
be re-ordered from.

 If the store has 1,000 stock items and information about
each item takes 10 seconds to be re-entered then, every time
the program stops running it will take nearly three hours of
constant typing before it can be re-started.

 This by itself is clearly unworkable.

 But the problem becomes much worse when you consider

that if the purpose of the program is to track stock then the
program itself may be the only “reliable” and up-to-date
source of information about the store's stock in the first
place!

 If the program crashes or there is a power failure then the

amount of data lost will be enormous.

 Clearly there is a need for programs to be able to maintain

data, even when they are not executing.

ICT159 Lecture Notes Topic 7 – Page 3

Files and File Systems
 This is done by writing the data to some form of “secondary

storage” such as a disk.

 The exact way that data is stored on the disk is determined

by the operating system and is referred to as the “file
system”.

 However, virtually all file systems work in a similar way

whereby data relating to a particular thing is stored together
in something called a file.

 Files themselves are stored within logical locations on the

disk called directories.
 The analogy is often drawn between directories and

physical folders which store papers so the term folder is
often used.

 Directories themselves are usually arranged in a

hierarchical tree structure, i.e., one within another.

 Files and directories are both given names, however, to

uniquely refer to a specific file or directory it's location
relative to the directories it is in must be given.

 This is known as the path to that file or directory.

ICT159 Lecture Notes Topic 7 – Page 4

Records within Files
 Although the format of the data within files does differ (see

below), the contents of a file can still be viewed in the same
general way.

 Since files contain data about the same thing, there is

always some general similarity between the different parts
that make up a file.

 Because of this files can be thought of as being made up of
a number of records.

 Each record is of the same general structure and records are
usually of the same size (although not always).

 For example, a file might contain data about the stock

stored in a warehouse.
 Each record in the file contains information about a

particular stock item.
 So if there are 100 different types of stock items, the file

will contain 100 records.

 The data which makes up each record can be broken down

into fields, for example there might be a field for the name
of the stock item and another for the number of that item
currently in stock.

 This is very similar to a struct in C and, in fact, the

records in a file can be thought of as an array of structs
stored on the disk.

 Now although files can be described as a collection of

records, the structure of those records can differ
enormously from one file to another.

 These differing structures are known as the file's format.

ICT159 Lecture Notes Topic 7 – Page 5

File Formats and Text Files
 The format of data within the file itself is completely the

responsibility of the programs that will read from and write
to the file.

 Most programs have their own format for encoding and

storing data which often only they understand.

 However, there is a generic standard format whereby the

data within the file is essentially not encoded at all.
 Instead the data is simply stored as lines of text characters,

usually just in plain ASCII.

 These files are commonly referred to as text files and are

the format we will be working with in this unit.

Working With Text Files
 The records in text files are made up of lines which

represent a string of characters followed by a newline
character.

 In C this character is represented by '\n'.

 Note that the length of the records (the length of the line) is

not fixed for text files – it just keeps going until a newline
is found.

 However, programs often artificially limit it to “word
wrap” the text when displaying it to the screen.

 To gain access to a file (including non-text files) the

program must make a request via the operating system to
open the file.

 Most programming languages provide built-in routines
for doing this in a simple and convenient way.

ICT159 Lecture Notes Topic 7 – Page 6

 The attempt at opening a file will either succeed or fail.
 Failure may occur if, for example, the file does not exist

or the OS denies access to it for security reasons etc.

 When opening the file the program must also specify what

it wants to do with the file once open.
 Files may be opened for reading, writing or appending.

 Reading simply means that data can be sequentially read

out of the file but no changes can be made to the file.
 Files can also be opened for writing so that data can be

sequentially added to the file.
 Opening a non-existent file for writing causes an empty

file to be created into which data can be written.
 If a file that already exists is open for writing then the

contents of that file will be erased and data can then be
written into this now empty file.

 Opening a file for appending allows the program to write
data to the file but this time the existing data in the file is
not erased and the new data is added to the end of the file
(appended).

 As indicated, when dealing with text files data can only be

read from or written to that file in sequential order.
 This means making minor edits and changes to a file can

sometimes be awkward.

ICT159 Lecture Notes Topic 7 – Page 7

 WORKING WITH FILES IN C
Overview
 In this unit we will be using the Standard C library

routines for working with files.

 To start working with a file, it needs to be opened.

 This can be done using the fopen() function in the

standard C library.

 To use this function, you need to provide the name (path)
of the file to be opened, as well as the mode
(read/write/append).

r = read
w = write
a = append

 The function will return what is known as a file pointer,
which then allows you to access the file using other
functions.

 For example:

 srcFile = fopen (“myfile.txt”, "r");

 Once the text file is open, you can use the fgets() we

have already looked at to read strings from the file.

 When you’re done with the file, it should be closed using
fclose()

file
pointer

file
path

access
mode

ICT159 Lecture Notes Topic 7 – Page 8

Here is a program that demonstrates how to read from a file:

#include <stdio.h>

int main(int argc, char *argv[])

{

 const int SIZE = 128;

 char line[SIZE];

 FILE *srcFile;

 if(argc == 1)

 {

 printf("No command line arguments

given!\n");

 return(0);

 }

 srcFile = fopen (argv[1], "r");

 while (fgets(line, SIZE, srcFile) != NULL)

 {

 printf("%s", line);

 }

 fclose(srcFile);

 return(0);

}

file
pointer

ICT159 Lecture Notes Topic 7 – Page 9

Writing to Files
 To write to a file, you first need to open the file for writing

(or appending).

 You can then use the fprintf() function to write to the

file.

 This works exactly like printf(), except you tell it

which file to write to instead of writing to a default “file”
called the standard output (which usually refers to the
screen).

 For example:

outputFile = fopen (“myfile.txt”, "w");

...

fprintf(outputFile, "%s", line);

ICT159 Lecture Notes Topic 7 – Page 10

 Here is a program that demonstrates all of these concepts:

#include <stdio.h>

const int SIZE = 128;

int main(int argc, char *argv[])

{

 char line[SIZE];

 FILE *srcFile;

 FILE *destFile;

 if(argc == 1)

 {

 printf("No command line arguments

given!");

 return(0);

 }

 srcFile = fopen (argv[1], "r");

 destFile = fopen (argv[2], "w");

 while (fgets(line, SIZE, srcFile) != NULL)

 {

 fprintf(destFile, "%s", line);

 }

 fclose(srcFile);

 fclose(destFile);

 return(0);

}

ICT159 Lecture Notes Topic 7 – Page 11

FILE RECORD PROCESSING
Problems with Handling File Data
 One of the aspects of dealing with files is that it is quite

possible for the amount of data in the file to be very large.
 This is particularly true when compared with the amount of

data in terms of variables etc. that a program may declare
and store in memory.

 For example, it is rare for any module in a program to

declare more than say 10 different variables.
 If these occupy, on average, around four bytes then this is

only 40 bytes of data!
 If the program has an array with 100 or so elements then

this may grow to around 500 bytes.

 However, the sizes of files are generally measured in

kilobytes (1024 bytes per kilobyte) and files of many
megabytes (10242 bytes or 1024 kilobytes) are also very
common.

ICT159 Lecture Notes Topic 7 – Page 12

 So there are a number of issues here with regards to storing
data in memory that comes from a file:

 Obviously it is not possible to declare a separate
variable to hold each piece of data from a file so often
an array is used.

 The theoretical maximum file size that can be loaded
into memory depends on how much memory is
available – although this may be more than the amount
of memory physically present (e.g., 256MB) due to so-
called “virtual memory” systems.

 However, some of this memory will already be used
and for data from a file to be stored in memory by a
program then the block of memory allocated to do this
must be contiguous (all in a single block) and the
amount of contiguous memory available may be
relatively small.

 Also operating systems may impose limitations on how
much memory can be utilised by a single process
(running program) and this is hard to know in advance.

 There are other issues too since the amount of memory
required to hold the file data may be larger that the
actual size of the file if the data is compressed, e.g.,
image files.

ICT159 Lecture Notes Topic 7 – Page 13

Algorithmic Approaches
 All in all, dealing with the large amounts of data that can be

held in a file can be quite tricky.

 There are two fundamental types of approach possible:

 Multiple Loaded Records
 Single Record Batch Processing

Multiple Loaded Records
 This involves loading multiple records from the file into

memory.
 Most of the time the entire file is loaded.

1. This will involve allocating sufficient memory to hold all of

these records.
2. This will usually be done with an array.

 Because of the potential problems with allocating so much

memory this is clearly not ideal.
 But for many problems it is the only option.
 For example, sorting the contents of a file generally

requires that the entire file be held in memory.
 Manipulating compressed data such as that contained in

image files also requires that data be completely loaded into
memory.

ICT159 Lecture Notes Topic 7 – Page 14

 Another common example of a program that does this is a
text editor like you have been using to write and edit your
programs.

 The text editor works by opening a file for reading and then

loading the entire contents into memory.
 The user then makes changes to the contents of this version

of the file in memory – note that the original file on the disk
is not touched at all during this process.

 Once the changes have been made they then “save” the file.
 This means the editor now re-opens the file on the disk, this

time for “writing”.
 The file is now truncated and all of its contents are deleted.
 The new version of the file which contains the changes the

user made is now written back to the disk.

 Since the edits made by the user to the file can be to any

part of the file and in any order and because the only ways
of accessing the file are read, write and append, the only
way of working with the file is to hold its entire contents in
memory while editing it.

 It simply isn't possible to make edits directly to individual

parts of the file so there is no alternative but to hold the
entire file's data in memory all at once.

 Of course, some files are simply too big to be loaded into

memory all at once.
 For example, digital video is often many gigabytes in

size.
 In this situation a specialised approach is required whereby

the file is dealt with in separate portions or “chunks” at a
time.

ICT159 Lecture Notes Topic 7 – Page 15

Single Record Batch Processing
 The alternative to loading multiple records is to only load

as little of the file into memory at one time as possible.

 This typically involves reading only a single record in,

processing it in memory and then reading in the next
record.

 Because the records in the file are processed one after the

other in order and typically no interaction with the user is
required, this is often described as batch processing.

 When the next record is read then the previous record is

discarded.
 This means that the memory required to process the file

is not cumulative.
 Since the entire file is not being loaded into memory the

memory required is of a fixed size, namely that for a
single record.

 This sort of processing is clearly the more memory efficient

of the two and also eliminates potential problems relating to
limited available memory.

 So it is nearly always the best approach to use whenever
this is possible.

ICT159 Lecture Notes Topic 7 – Page 16

SUMMARY
 Files are useful as there are many situations where a

program needs to deal with a lot of data and this cannot be
entered by the user from the keyboard each time the
program is run.

 Files allow a program to store large amounts of data which

remains on the disk after the program has finished
executing.

 Files can be opened for reading, writing and appending

only.
 This means that apart from appending data to the end of

the program, the only way of adding data to it is to
rewrite the whole file.

 Algorithmically there are two basic ways of dealing with

file data and these are:
 to read the entire contents into memory all at once for

processing.
 to process only a single record at a time.

